New
New
Year 10
AQA
Foundation

Displacement and velocity as vectors (v=s/t)

I can represent and calculate the velocity of moving objects.

New
New
Year 10
AQA
Foundation

Displacement and velocity as vectors (v=s/t)

I can represent and calculate the velocity of moving objects.

Share activities with pupils
Share function coming soon...

Lesson details

Key learning points

  1. The velocity of an object is its speed in a given direction.
  2. The displacement of an object is the distance it travels in a particular direction.
  3. Displacement and velocity are both vector quantities.
  4. Velocity has a positive value in one direction and negative value in the opposite direction.

Common misconception

Pupils often have a tendency to believe that a velocity must have a positive value and have difficulty in associating a reverse in direction with a change in sign.

It is important to make sure pupils are secure in their knowledge of the vector–scalar distinction; use plenty of visual examples.

Keywords

  • Displacement - The displacement of an object is the distance travelled in a particular direction from a starting point.

  • Vector - A vector is a quantity with magnitude (size) and direction. Displacement and velocity are both vector quantities.

  • Velocity - The velocity of an object is its speed in a particular direction.

Licence

This content is © Oak National Academy Limited (2024), licensed on Open Government Licence version 3.0 except where otherwise stated. See Oak's terms & conditions (Collection 2).

Video

Loading...

6 Questions

Q1.
A pupil measures the time taken for different sports balls to travel 30 cm. Use the times to put the balls in order of decreasing speed, starting with the fastest.
1 - ball D: 0.25 s
2 - ball A: 0.28 s
3 - ball B: 0.31 s
4 - ball C: 0.34 s
5 - ball E: 0.36 s
Q2.
Which three of these equations show the correct relationship between average speed, distance travelled and time taken?
Correct answer: average speed = distance travelled ÷ time taken
average speed = distance travelled × time taken
Correct answer: distance travelled = average speed × time taken
Correct answer: time taken = distance travelled ÷ average speed
time taken = distance travelled ÷ average speed
Q3.
What should be done with a single anomalous result in a set of five readings?
Change the value of the anomalous result to match the others in the set.
Correct answer: Repeat the test for the anomalous result and replace it with the new value.
Repeat the whole experiment from the start using different equipment.
Correct answer: Cross out the anomalous result and ignore it in any calculations.
Use the anomalous result in any calculations but not on the graph.
Q4.
A pupil measures the time it takes for a car to pass between two street lamps as 5.0 s. If the car is moving at 8.0 m/s, how far apart are the lamps?
3.0 m
13.0 m
1.6 m
0.6 m
Correct answer: 40 m
Q5.
Which of these is a correct definition of a scalar quantity?
A quantity with a very large value.
A quantity with a very small value.
Correct answer: A quantity that has a magnitude but not a direction.
A quantity that has a magnitude and a direction.
A quantity that always has a value of zero.
Q6.
A tennis ball was released from a height of 20 m and took 20 s to fall to the ground. Which statements about the speed of the ball are correct?
Correct answer: The average speed of the ball was 10 m/s.
The instantaneous speed of the ball was the same throughout the fall.
The highest instantaneous speed of the ball was 10 m/s
The highest instantaneous speed of the ball was less than 10 m/s
Correct answer: The highest instantaneous speed of the ball was greater than 10 m/s

6 Questions

Q1.
Match the key words or phrases to their definitions.
Correct Answer:displacement,the distance travelled in a straight line from a starting point

the distance travelled in a straight line from a starting point

Correct Answer:vector quantity,a quantity with a magnitude (size) and a direction

a quantity with a magnitude (size) and a direction

Correct Answer:scalar quantity,a quantity with a magnitude (size) but not a direction

a quantity with a magnitude (size) but not a direction

Correct Answer:velocity,the speed of an object in a particular direction

the speed of an object in a particular direction

Q2.
Which of these are examples of displacements?
Correct answer: 30 km north
Correct answer: 30 cm left
30 m
Correct answer: 30 m down
30 m/s
Q3.
A train takes 2 hours to travel from one station to another which is 150 km west of the starting point. Calculate the velocity of the train.
300 km/h west
150 km/h west
Correct answer: 75 km/h west
300 m/s west
75 m/s west
Q4.
A pupil walks 5 m north, 3 m south and then 2 m north. Which of these statements about the pupil's journey are correct?
The total distance travelled is 4 m.
Correct answer: The total distance travelled is 10 m.
Their final displacement is 10 m north.
Correct answer: Their final displacement is 4 m north.
Q5.
Two cars are approaching each other. Car A has a velocity of 4 m/s west and Car B has a velocity of 4 m/s east. What is the relative velocity (speed) of the two cars?
0 m/s
4 m/s
Correct answer: 8 m/s
16 m/s
Q6.
A pupil walks 10 m west in 10 s, 5 m east in 5 s and 15 m west in 25 s. Calculate the magnitude of the average velocity for the complete journey (do not give the direction).
Correct Answer: 0.5 m/s, 0.5 m/s west, 0.5 m/s w, 0.5 m/s W, 0.5 m/s left