New
New
Year 6

Use constant difference to balance equations and find unknowns

I can use the same difference rule to balance equations.

New
New
Year 6

Use constant difference to balance equations and find unknowns

I can use the same difference rule to balance equations.

warning

These resources will be removed by end of Summer Term 2025.

Switch to our new teaching resources now - designed by teachers and leading subject experts, and tested in classrooms.

Lesson details

Key learning points

  1. If I add __ to the minuend and add the same number to the subtrahend, the difference stays the same.
  2. If I subtract __ from the minuend and add the same number to the subtrahend, the difference stays the same.
  3. A number line can be used to represent the 'same difference' generalization.

Keywords

  • Minuend - The minuend is the number being subtracted from.

  • Subtrahend - A subtrahend is a number subtracted from another.

  • Difference - The difference is the result after subtracting one number from another.

  • Constant - A constant is a quantity that has a fixed value that does not change or vary, such as a number.

  • Unknown - An unknown is a quantity that has a set value but it is represented by a symbol or letter.

Common misconception

Lots of pupils will want to calculate the value of the expression with the known parts in order to calculate the unknown part without considering a more efficient approach.

Calculating the value of one expression is efficient with simple numbers but encourage the children to try and compare the parts instead. As the numbers get harder, calculating the expression becomes much less efficient.

Ensure that the children known which parts are the minuend, subtrahend and difference before solving problems. This is particularly important in the worded problems.
Teacher tip

Licence

This content is © Oak National Academy Limited (2024), licensed on Open Government Licence version 3.0 except where otherwise stated. See Oak's terms & conditions (Collection 2).

Lesson video

Loading...

6 Questions

Q1.
Match the pairs of number complements to 100
Correct Answer:34,66

66

Correct Answer:12,88

88

Correct Answer:43,57

57

Correct Answer:54,46

46

Q2.
Use a mental strategy to sum these multiples of 100 5,300 + 1,800 =
Correct Answer: 7,100
Q3.
Add together these multiples of 1,000 using a mental strategy. = 117,000 + 19,000
Correct Answer: 136,000
Q4.
Complete this subtraction using a mental strategy. 367,000 − 24,000 =
Correct Answer: 343,000
Q5.
How much change would I get from £20 if I spent £10.98 on a new football? £ change.
Correct Answer: 9.02, £9.02
Q6.
I have a ball of old plasticine that weighs 655 g and a new jumbo pack that weight 1.4 kg. What mass of plasticine do I have altogether?
Correct Answer: 2.055 kg, 2,055 g, 2.055, 2,055

6 Questions

Q1.
Use your understanding of constant difference to work out which of the equations in the sequence is incorrect.
56 − 16 = 57 − 17
55 − 15 = 58 − 18
54 − 14 = 59 − 19
53 − 13 = 60 − 20
Correct answer: 52 − 12 = 61 − 19
Q2.
Use your understanding of constant difference to work out which of the equations in the sequence is incorrect.
45 − 13 = 187 − 155
Correct answer: 145 − 113 = 178 − 145
245 − 213 = 167 − 135
345 − 313 = 157 − 125
445 − 413 = 147 − 115
Q3.
Use constant difference to find the unknown in the equation. 65 − = 150 − 111
Correct Answer: 26
Q4.
Use constant difference to find the unknown in the equation. 1,510 − 1,400 = − 200
Correct Answer: 310
Q5.
Use constant difference to find the unknown in the equation. 345,000 − 236,200 = 310,000 −
Correct Answer: 201,200
Q6.
At the gift shop on a residential week, Alex has £13.50 and Sofia has £9.20 to spend. They both buy a souvenir fridge magnet to take home. Sofia now has £6.21 left. How much does Alex have left?
Correct Answer: £10.51, 10.51